skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paolillo, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.TheVera C. RubinObservatory’s Legacy Survey of Space and Time (LSST) will revolutionize time-domain astronomy by detecting millions of different transients. In particular, it is expected to increase the number of known type Ia supernovae (SN Ia) by a factor of 100 compared to existing samples up to redshift ∼1.2. Such a high number of events will dramatically reduce statistical uncertainties in the analysis of the properties and rates of these objects. However, the impact of all other sources of uncertainty on the measurement of the SN Ia rate must still be evaluated. The comprehension and reduction of such uncertainties will be fundamental both for cosmology and stellar evolution studies, as measuring the SN Ia rate can put constraints on the evolutionary scenarios of different SN Ia progenitors. Methods.We used simulated data from the Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2) and LSST Data Preview 0 to measure the SN Ia rate on a 15 deg2region of the “wide-fast-deep” area. We selected a sample of SN candidates detected in difference images, associated them to the host galaxy with a specially developed algorithm, and retrieved their photometric redshifts. We then tested different light-curve classification methods, with and without redshift priors (albeit ignoring contamination from other transients, as DC2 contains only SN Ia). We discuss how the distribution in redshift measured for the SN candidates changes according to the selected host galaxy and redshift estimate. Results.We measured the SN Ia rate, analyzing the impact of uncertainties due to photometric redshift, host-galaxy association and classification on the distribution in redshift of the starting sample. We find that we are missing 17% of the SN Ia, on average, with respect to the simulated sample. As 10% of the mismatch is due to the uncertainty on the photometric redshift alone (which also affects classification when used as a prior), we conclude that this parameter is the major source of uncertainty. We discuss possible reduction of the errors in the measurement of the SN Ia rate, including synergies with other surveys, which may help us to use the rate to discriminate different progenitor models. 
    more » « less
  2. Aims. We study the ensemble X-ray variability properties of active galactic nuclei (AGN) over large ranges of timescale (20 ks ≤  T  ≤ 14 yr), redshift (0 ≤  z  ≲ 3), luminosity (10 40  erg s −1  ≤  L X  ≤ 10 46  erg s −1 ), and black hole (BH) mass (10 6  ≤  M ⊙  ≤ 10 9 ). Methods. We propose the use of the variance-frequency diagram as a viable alternative to the study of the power spectral density (PSD), which is not yet accessible for distant, faint, and/or sparsely sampled AGN. Results. We show that the data collected from archival observations and previous literature studies are fully consistent with a universal PSD form, which does not show any evidence for systematic evolution of shape or amplitude with redshift or luminosity, even if there may be differences between individual AGN at a given redshift or luminosity. We find new evidence that the PSD bend frequency depends on BH mass and possibly on accretion rate. We finally discuss the implications for current and future AGN population and cosmological studies. 
    more » « less
  3. Context. We present our sixth work in a series dedicated to variability studies of active galactic nuclei (AGN), based on the survey of the COSMOS field by the VLT Survey Telescope (VST). Its 54 r -band visits over 3.3 yr and single-visit depth of 24.6 r -band mag make this dataset a valuable scaled-down version that can help forecast the performance of the Rubin Observatory Legacy Survey of Space and Time (LSST). Aims. This work is centered on the analysis of the structure function (SF) of VST-COSMOS AGN, investigating possible differences in its shape and slope related to how the AGN were selected, and explores possible connections between the AGN ensemble variability and the black-hole mass, accretion rate, bolometric luminosity, redshift, and obscuration of the source. Given its features, our dataset opens up the exploration of samples ∼2 mag fainter than most literature to date. Methods. We identified several samples of AGN – 677 in total – obtained through a variety of selection techniques partly overlapping. Our analysis compares the results for the various samples. We split each sample in two based on the median of the physical property of interest, and analyzed the differences in the SF shape and slope, and their possible causes. Results. While the SF shape does not change with depth, it is highly affected by the type of AGN (unobscured or obscured) included in the sample. Where a linear region can be identified, we find that the variability amplitude is anticorrelated to the accretion rate and bolometric luminosity, consistent with previous literature on the topic, while no dependence on black-hole mass emerges from this study. With its longer baseline and denser and more regular sampling, the LSST will allow for an improved characterization of the SF and its dependencies on the mentioned physical properties over much larger AGN samples. 
    more » « less